Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral:

The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles.

Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It is a component in various probability-distribution functions, and as such it is applicable in the fields of probability and statistics, as well as combinatorics.

The gamma function can be seen as a solution to the following interpolation problem: “Find a smooth curve that connects the points (x, y) given by y = (x − 1)! at the positive integer values for x.”

My current interest is flows: flowing on a beat, flowing along a manifold, flows on the electromagnetic spectrum, flow curves, flows of a vector field, the flow of time, time as currency, the flow of electrons: currency, like electric currents, electric daisies, current interest rates, current events, swimming against the current, fluid flow, flux and divergence... you know... flowers.
View more posts

One thought on “The Gamma Function”

The reason I brought up the gamma function was because of this post, I don’t know if they’re related.

The reason I brought up the gamma function was because of this post, I don’t know if they’re related.